

Constellation X-ray Mission

Outline

- Introduction why is this hard? Why is it different?
- Metrology requirements & performance summary
- Issue: fixturing
- Potential solutions to full-aperture testing

Note on optical metrology requirements

- All requirements to be shown here are derived from the overall SXT optical imaging error budget;
 - Ref: SPIE & FMA study pre-bidder's conference presentations by W. Podgorski (error budget & systems analysis) and T. Saha (optical design)
- As such, these are DERIVED requirements intended to ensure that the image error contributions from metrology are small (typically <= 10% in an rss sense) as compared to the requirements on substrates, replicated reflectors, mandrels, and optical assemblies.
 - We also are responsible for testing formed substrates as feedback to the fabrication process

Mirror comparison table – aspect ratio

					C-X SXT reflectors		
							Flight
	units	AstroE2	Chandra	XMM	OAP	Prototype	(20cm)
Largest mirror radius	mm	106	600	350	247.5	800	800
angular width	degree	90	360	360	56	30	30
arc length	mm	167	n/a	n/a	241.9	418.9	418.9
axial length, per reflection	mm	100	840	300	200	200	200
part diagonal	mm	194	n/a	n/a	314	464	464
substrate thickness	mm	0.155	20	0.85	0.4	0.4	0.4
aspect ratio		1253	42	353	785	1160	1160

Stiffness scales as thickness³, so the SXT reflectors are much less stiff than all previous missions except AstroE2

HPD * areal density: mirror difficulty metric?

Table 2: HPD, Areal density, and product comparison among missions

	mirror			areal	Required	product HPD	
mission	material	density	thickness	density	HPD	*areal density	
units		kg/m^2	mm	kg/m ²	arcsec	arcsec* kg/m ²	
AstroE2	Al	2700	0.2	0.4	90	38	
Chandra	Zerodur	2530	20	50.6	0.5	25	
C-X SXT	Desag 263	2510	0.4	1.0	12	12	
ROSAT	Zerodur	2530	20	50.6	3	152	
XMM	Ni	8908	0.9	7.6	15	114	

Metrology requirements & performance table

Requirements come from error budget – inputs from W. Podgorski (error budget¹)

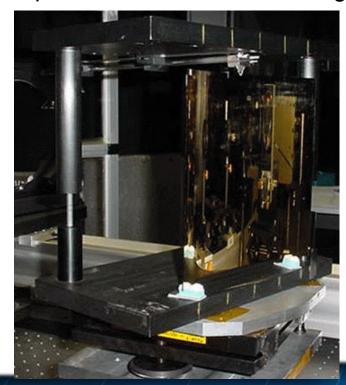
Metrology requirement is allocated 10% of reflector derived requirements; in an root-sum-sqared budget, the metrology requirement is then 1/√10 of the reflector requirement for each error term

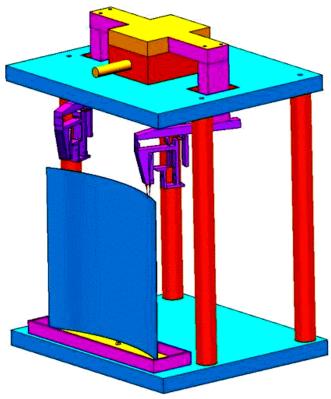
		Reflector derived	Metrology	Mandrel metrology		Substrate/Reflec- tor metrology		
Error term	units	require- ment	Require- ment	perfor- mance	method	perfor- mance	method	note
Average radius error	um	±100	32	±2		tbd	nC CMM	3
Cone angle deviation	arcsec	±30	9.5	±5		3.2		
Delta-delta-r error, rms	arcsec	0.71	0.2	0.6	CMM	0.1	CDA	1
Roundness (in phase) or azimuthal figure, rms	um	5	1.6	0.3		(1)	nC CMM	
Axial sag error (P/V)	um	±0.07	0.02	±0.01	Wyko400/	(±0.01)	Wyko400/	2, 4
Axial slope irregularity, rms	arcsec	2.36	0.75	0.35	8BX	0.5	8BX	
Midfrequency error, rms	nm	8	2.53	0.1	Bauer200	(0.1)	Bauer200/ Wyko400	2
Microrough- ness, rms	nm	0.4	0.13	0.09	Micro- XAM	(0.1)	Micro- XAM	

notes

- 1. CDA applicable to P or S substrate or replica in a housing or assembly
- 2. Parentheses indicate the expected value, but confirmation is incomplete on this type of part
- 3. nC == either non-contact or <=15mg contact force probe
- 4. 8BX == 8" (20cm) beam expander (built in house for 20cm axial metrology)
- 5. Estimate from extensive discussions inside (not formally documented)

Fixturing issue for substrate/replica metrology

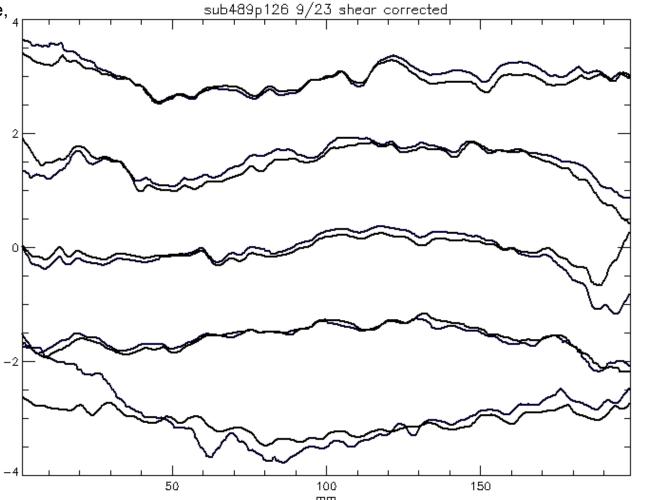

- Requirements for fixturing these parts for metrology are very difficult
 - Distortion must be minimized
 - Any distortions must be highly repeatable and correlated with FEM


Consensus is a near-kinematic mount, correlated w/ models & cross-

checked

We are still working on this

Examples of mounts we are testing shown


Example – axial data repeatability after removal & reinsertion into a test fixture

Part is a primary substrate, 20cm axial length, ~50cm diameter. We have used this part for extensive metrology checks

Curves are offset by 2 µm for clarity

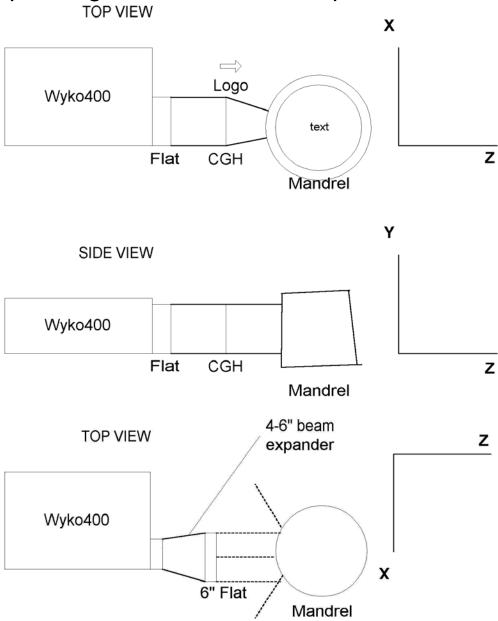
P1/P5 are ~1/2 way from center to each azimuthal edge

9/22 & 9/23 data with shear corrected (no polynomial removal)

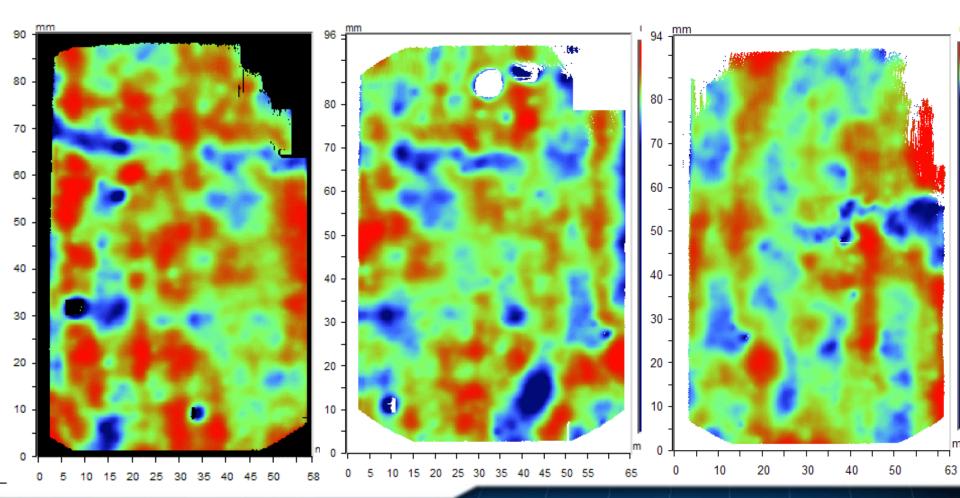
P1

P5

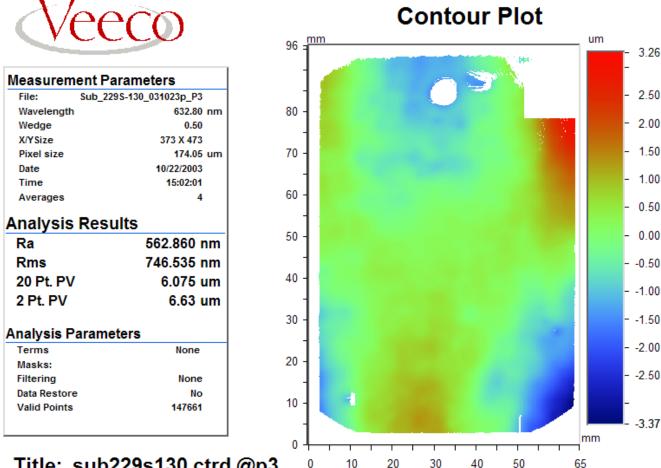
Full aperture testing


- It's been clear for some time that the current axial profiling, while useful, is not sufficient as a metrology tool
 - Still allows ΔΔR errors
 - Not enough area of the part covered to really supply all of the required feedback to the fabrication process
- Several potential solutions are being studied
 - Computer-generated hologram (CGH) based interferometry
 - Rapid, custom coordinate measuring machine
 - Other interferometry methods
- Example of CGH data (AstroE-scale replica) shown here

Different layouts for axial profiling of mandrels and replicas

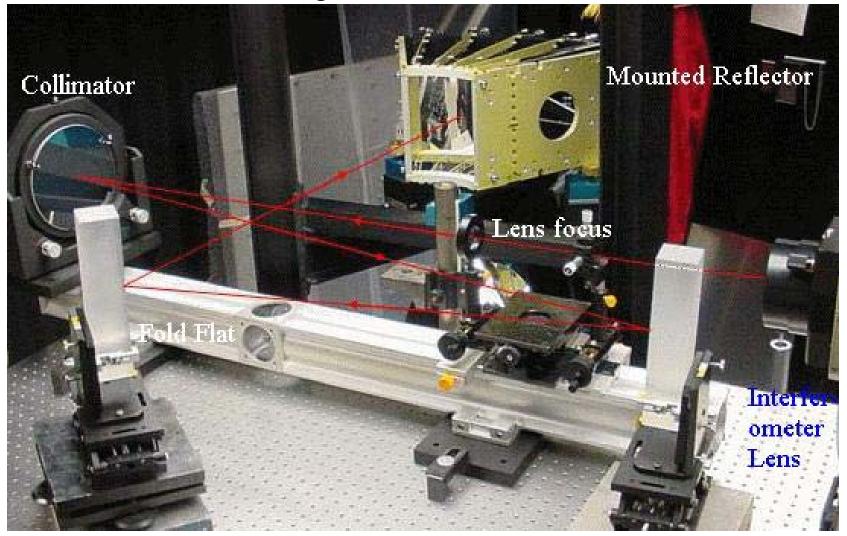

Top: CGH cylinder/cone wave layout

Bottom: Plane wave interferometer layout



Composite (but w/ 15 Zernike's removed) – high order figure error – good correlation is evident

Example CGH data – 1 of 3 on AstroE scale substrate Sub229S-130


Title: sub229s130 ctrd @p3

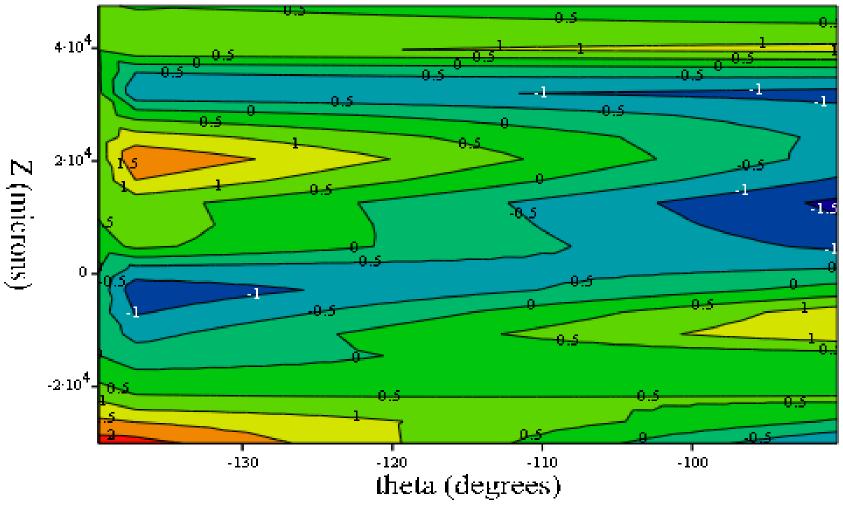
Note: w/ cone CGH

Axial is vertical direction (mm), horizontal is ~25 degrees wide (out of 54) 3 overlapping images map the full width and 90% of the height of this 100mm long optic

In-situ axial figure station

We would prefer to use a (larger, custom) CGH here and get close to full width and as long An axial view as CGH fabrication allows; this shows current interferometer steup for profiles only

CMM-based methods of mapping reflectors


- We are piloting this work using
 - GSFC's high precision, slow (manual) CMM
 - SAO's commercial (lower precision) automated CMM
- These are Cartesian and therefore not ideally suited to mapping conical parts. We are procuring a conical CMM, either non-contact or very low contact force
- Example data on an AstroE scale replica (mm/degrees):

```
FITCONE VERSION 1.2
```

```
Fitted cone and alignment parameters
axis x-displacement:
                               0.917130
                                                                         (mm)
axis y-displacement:
                               1.995858
                                116.032083
cone radius at z=0 plane:
semi-cone angle (degrees):
                                  1.102333
                                 -0.001196
cone axis tilt about x (degrees):
cone axis tilt about y (degrees):
                                 -0.284301
rms deviation from best fit cone:
                                               < 1 micron residual
```


Map of radial errors from best fit cone on AstroE replica Replica 229s100; Rms=0.964 micron

Best cone fit to CMM data is 1.1°cone angle

Summary

- The SXT reflectors have tight requirements relative to their stiffness;
 this places extra constraints on the metrology
- Mandrel metrology is well in hand
- Axial metrology on substrates & replicas is also in good shape
 - We are still working on the best fixturing method for substrates and replicas
- Midfrequency and microroughness correlate with the axial data
- Microroughness has been confirmed by x-ray scattering
- We are exploring different methods of mapping the substrates and reflectors to get more information both for the production process and the alignment process
 - We hope that a combination of normal incidence interferometry and CMM work will allow determination of shape, figure, and midfrequency errors

Reference: D. A. Content, D. Colella, C. Fleetwood, T. Hadjimichael, T. Saha, G. Wright, W. Zhang, "Optical metrology for the segmented optics on the Constellation-X soft x-ray telescope," Proc. SPIE [5168-23] (2003).